Excited State Proton Transfer of Natural Flavonoids and Their Chromophores in Duplex and Tetraplex DNAs
نویسندگان
چکیده
Fisetin (3,7,3',4'-tetrahydroxyflavone) and quercetin (3,5,7,3',4'-pentahydroxyflavone) are the bioactive plant flavonoids that are potentially useful therapeutic drugs for the treatment of a broad spectrum of diseases, including atherosclerosis, cardiovascular disease, obesity, hypertension, and cancer. 3-Hydroxyflavone (3HF) and 7-hydroxyflavone (7HF) are the synthetic chromophores of fisetin and quercetin. We have exploited dual luminescence properties of fisetin and quercetin along with 3-HF and 7HF to examine their efficacy of binding and compare their interactions with DNA, which is one of the macromolecular targets of flavonoids in physiological systems. Following the sequence of the human telomeric DNA 5'-d (CCCTAA-)n/(-TTAGGG)n-5', two single-stranded DNA oligonucleotides, 5'-d(C3TA2)3C3-3' and 5'-d(T2AG3)4-3', and their duplex were used as receptors to study binding by the ligands quercetin, fisetin, and their chromophores. Circular dichroism, differential absorption, UV thermal melting, and size exclusion chromatographic studies indicated the formation of unusual DNA structures (such as C4 and G4 tetraplexes) for both the C- and G-rich single-stranded DNAs. Upon binding to DNA, dramatic changes were observed in the intrinsic fluorescence behavior of the flavonoids. Molecular docking studies were performed to describe the likely binding sites for the ligands. The spectroscopic studies on flavonoid-DNA interactions described herein demonstrate a powerful approach for examining their DNA binding through exploiting the highly sensitive intrinsic fluorescence properties of the flavonoids as their own "reporter" for their interactions with macromolecular targets.
منابع مشابه
Conformationally locked chromophores as models of excited-state proton transfer in fluorescent proteins.
Members of the green fluorescent protein (GFP) family form chromophores by modifications of three internal amino acid residues. Previously, many key characteristics of chromophores were studied using model compounds. However, no studies of intermolecular excited-state proton transfer (ESPT) with GFP-like synthetic chromophores have been performed because they either are nonfluorescent or lack a...
متن کاملExcited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore
The chemical locking of the central single bond in core chromophores of green fluorescent proteins (GFPs) influences their excited-state behavior in a distinct manner. Experimentally, it significantly enhances the fluorescence quantum yield of GFP chromophores with an ortho-hydroxyl group, while it has almost no effect on the photophysics of GFP chromophores with a para-hydroxyl group. To unrav...
متن کاملPhotochemistry of Pheomelanin Building Blocks and Model Chromophores: Excited-State Intra- and Intermolecular Proton Transfer.
Pheomelanins, the epidermal pigments of red-haired people responsible for their enhanced UV susceptibility, contain 1,4-benzothiazines and 1,3-benzothiazole as main structural components. Despite the major role played in pheomelanin phototoxicity, the photoreactivity of these species has so far remained unexplored. Static and time-resolved fluorescence spectroscopy was used to identify excited-...
متن کاملHydrogen Bonds in Excited State Proton Transfer.
Hydrogen bonding interactions between biological chromophores and their surrounding protein and solvent environment significantly affect the photochemical pathways of the chromophore and its biological function. A common first step in the dynamics of these systems is excited state proton transfer between the noncovalently bound molecules, which stabilizes the system against dissociation and pri...
متن کاملComputational study of the intramolecular proton transfer between 6-hydroxypicolinic acid tautomeric forms and intermolecular hydrogen bonding in their dimers
This paper is a density functional theory (DFT) calculation of intramolecular proton transfer (IPT) in 6-hydroxypicolinic acid (6HPA, 6-hydroxypyridine-2-carboxylic acid) tautomeric forms. The transition state for the enol-to-keto transition is reported in the gas phase and in four different solvents. The planar and non-planar dimer forms of 6HPA keto and enol, respectively, were also studied i...
متن کامل